Test ID: LSDGP Lysosomal Storage Disease Gene Panel, Varies
Ordering Guidance
For neuronal ceroid lipofuscinosis, first-tier biochemical testing is available for the 2 most common types of enzyme deficiency; see TPPTL / Tripeptidyl Peptidase 1 and Palmitoyl-Protein Thioesterase 1, Leukocytes.
Testing for the 15 neuronal ceroid lipofuscinosis genes is available separately; see NCLGP / Neuronal Ceroid Lipofuscinosis (Batten Disease) Gene Panel, Varies.
Customization of this panel and single gene analysis for any gene present on this panel is available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. For instructions for testing patients who have received a bone marrow transplant, call 800-533-1710.
Submit only 1 of the following specimens:
Specimen Type: Whole blood
Container/Tube: Lavender top (EDTA) or yellow top (ACD)
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred)/Refrigerated
Specimen Type: Skin biopsy
Supplies: Fibroblast Biopsy Transport Media (T115)
Container/Tube: Sterile container with any standard cell culture media (e.g., minimal essential media, RPMI 1640). The solution should be supplemented with 1% penicillin and streptomycin.
Specimen Volume: 4-mm punch
Specimen Stability Information: Refrigerated (preferred)/Ambient
Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.
Specimen Type: Cultured fibroblast
Container/Tube: T-25 flask
Specimen Volume: 2 Flasks
Collection Instructions: Submit confluent cultured fibroblast cells from a skin biopsy from another laboratory. Cultured cells from a prenatal specimen will not be accepted.
Specimen Stability Information: Ambient (preferred)/Refrigerated (<24 hours)
Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.
Specimen Type: Blood spot
Supplies: Card-Blood Spot Collection (Filter Paper) (T493)
Container/Tube:
Preferred: Collection card (Whatman Protein Saver 903 Paper)
Acceptable: PerkinElmer 226 (formerly Ahlstrom 226) filter paper, or blood spot collection card
Specimen Volume: 5 Blood spots
Collection Instructions:
1. An alternative blood collection option for a patient older than 1 year is a fingerstick. For detailed instructions, see How to Collect Dried Blood Spot Samples.
2. Let blood dry on the filter paper at ambient temperature in a horizontal position for a minimum of 3 hours.
3. Do not expose specimen to heat or direct sunlight.
4. Do not stack wet specimens.
5. Keep specimen dry
Specimen Stability Information: Ambient (preferred)/Refrigerated
Additional Information:
1. Due to lower concentration of DNA yielded from blood spot, it is possible that additional specimen may be required to complete testing.
2. For collection instructions, see Blood Spot Collection Instructions
3. For collection instructions in Spanish, see Blood Spot Collection Card-Spanish Instructions (T777)
4. For collection instructions in Chinese, see Blood Spot Collection Card-Chinese Instructions (T800)
Specimen Type: Saliva
Patient Preparation: Patient should not eat, drink, smoke, or chew gum 30 minutes prior to collection.
Supplies: Saliva Swab Collection Kit (T786)
Specimen Volume: 1 Swab
Collection Instructions: Collect and send specimen per kit instructions.
Specimen Stability Information: Ambient 30 days
Additional Information: Due to lower concentration of DNA yielded from saliva, it is possible that additional specimen may be required to complete testing.
Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
2. Molecular Genetics: Biochemical Disorders Patient Information (T527)
3. If not ordering electronically, complete, print, and send a Biochemical Genetics Test Request (T798) with the specimen.
Useful For
Follow up for abnormal biochemical results and confirmation of suspected lysosomal storage disease (LSD)
Establishing a molecular diagnosis for patients with LSD
Identifying variants within genes known to be associated with LSD, allowing for predictive testing of at-risk family members
Genetics Test Information
This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 56 genes associated with lysosomal storage disease: AGA, ARSA, ARSB, ASAH1, ATP13A2, CHIT1, CLN3, CLN5, CLN6, CLN8, CTNS, CTSA, CTSD, CTSF, CTSK, DNAJC5, FUCA1, GAA, GALC, GALNS, GBA, GFAP, GLA, GLB1, GM2A, GNPTAB, GNPTG, GNS, GRN, GUSB, HEXA, HEXB, HGSNAT, HYAL1, IDS, IDUA, KCTD7, LAMP2, LIPA, MAN2B1, MANBA, MCOLN1, MFSD8, NAGA, NAGLU, NEU1, NPC1, NPC2, PANK2, PPT1, PSAP, SGSH, SLC17A5, SMPD1, SUMF1, and TPP1. See Targeted Genes and Methodology Details for Lysosomal Storage Disease Gene Panel and Method Description for additional details.
Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for lysosomal storage disease.
Testing Algorithm
For skin biopsy or cultured fibroblast specimens, fibroblast culture testing will be performed at an additional charge. If viable cells are not obtained, the client will be notified.
For more information see Lysosomal Storage Disorders Diagnostic Algorithm, Part 2.
Method Name
Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing.
Reporting Name
LSD Gene PanelSpecimen Type
VariesSpecimen Minimum Volume
See Specimen Required
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Clinical Information
Lysosomal storage diseases (LSD) encompass a group of over 40 inherited biochemical diseases in which genetic variants cause defective lysosomal functioning. Lysosomes perform catabolic functions for cells, which is accomplished through activity of various proteins such as lysosomal enzymes, transport proteins, and other proteins. Functional deficits in these proteins cause an accumulation of substrates in cells leading to progressive organ dysfunction.
This leads to variable clinical features that can affect the cardiovascular, neurological, ocular, and skeletal systems, among others. Clinical features are dependent on the amount and location of the substrate accumulation but may include the following: characteristic facial features (coarse features), hepatomegaly, deafness, vision loss, abnormal skeletal findings, hydrops fetalis, ataxia, hypotonia, developmental delay/regression, and intellectual disability. Age of onset is variable, with symptoms presenting from the prenatal period to adulthood, but generally LSD are progressive and cause significant morbidity and mortality with a decreased lifespan. Enzyme replacement therapy and oral substrate inhibitors are therapeutic options for some LSD.
LSD are inherited in an autosomal recessive manner with the exception of Hunter, Fabry, and Danon diseases, which are X-linked. There are founder variants associated with LSD in the Ashkenazi Jewish and Finnish populations, leading to an increased carrier frequency for some. Overall, the prevalence of LSD is estimated at 1 in 7000 to 1 in 8000.
Neuronal ceroid lipofuscinoses (NCL) are a subset of LSD that involve defective cellular processing of lipids. NCL are clinically characterized by epilepsy, intellectual and motor decline, and blindness. Electron microscopy typically shows a characteristic accumulation of granular osmophilic deposits (GROD), curvilinear profiles (CVB), or fingerprint profiles (FP). Enzymatic testing may show deficiency in palmitoyl-protein thioesterase 1 (PPT1), tripeptidyl-peptidase 1 (TPP1), or cathepsin D (CTSD). Currently there are at least 14 genetically distinct forms.
Age of onset and clinical features can be variable, from congenital to adult onset. NCL is typically inherited in an autosomal recessive manner, although one adult-onset form (ANCL; DNAJC5 gene) has been shown to be autosomal dominant.
This panel includes sequencing of 43 genes related to various LSD, as well as 15 genes specific to NCL.
Alterations in various genes on this panel have also been associated with Parkinson disease or Lewy body disease. These alterations are not reported for individuals younger than 18 years of age but are available upon request.
Reference Values
An interpretive report will be provided.
Interpretation
All detected alterations are evaluated according to American College of Medical Genetics and Genomics recommendations.(1) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Clinical Reference
1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424
2. Wang RY, Bodamer OA, Watson MS, Wilcox WR; ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Lysosomal storage diseases: Diagnostic confirmation and management of presymptomatic individuals. Genet Med. 2011;13(5):457-484
3. Parenti G, Andria G, Ballabio A. Lysosomal storage diseases: from pathophysiology to therapy. Ann Rev Med. 2015;66:471-486
4. Filocamo, M. Morrone A. Lysosomal storage disorders: Molecular basis and laboratory testing. Hum Genomics. 2011;5:156-169
5. Coutinho MF, Alves S. From rare to common and back again: 60 years of lysosomal dysfunction. Mol Genet Metab. 2016;117(2):53-65
6. Robak LA, Jansen IE, van Rooij J, et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain. 2017;140(12):3191-3203
Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81443
88233-Tissue culture, skin, solid tissue biopsy (if appropriate)
88240-Cryopreservation (if appropriate)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
LSDGP | LSD Gene Panel | 105263-8 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
608536 | Test Description | 62364-5 |
608537 | Specimen | 31208-2 |
608538 | Source | 31208-2 |
608539 | Result Summary | 50397-9 |
608540 | Result | 82939-0 |
608541 | Interpretation | 69047-9 |
608542 | Resources | 99622-3 |
608543 | Additional Information | 48767-8 |
608544 | Method | 85069-3 |
608545 | Genes Analyzed | 48018-6 |
608546 | Disclaimer | 62364-5 |
608547 | Released By | 18771-6 |
Day(s) Performed
Varies
Report Available
21 to 35 daysReflex Tests
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
CULFB | Fibroblast Culture for Genetic Test | Yes | No |
mcl-moltechtestmenu