Test ID: CVHBG Comprehensive Cerebrovascular Gene Panel, Varies
Ordering Guidance
Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Necessary Information
Prior Authorization is available, but not required, for this test. If proceeding with the prior authorization process, submit the required form with the specimen.
Specimen Required
Patient Preparation: Â A previous bone marrow transplant from an allogenic donor will interfere with testing. For instructions for testing patients who have received a bone marrow transplant, call 800-533-1710.
Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred)/Refrigerated
Forms
1. New York Clients-Informed consent is required. Please document on the request form or electronic order that a copy is on file.
The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
2. Connective Tissue/Cerebrovascular Disease Genetic Testing Patient Information
3. Cerebrovascular Gene Panel (CVHBG) Prior Authorization Ordering Instructions
Useful For
Providing a genetic evaluation for patients with a personal or family history suggestive of a monogenic condition in which there is an increased risk for a cerebrovascular accident
Establishing a diagnosis of a monogenic condition in which there is an increased risk for a cerebrovascular accident
Genetics Test Information
This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 30 genes associated with monogenic conditions in which there is an increased risk for cerebrovascular accident (stroke): ACTA2, ACVRL1, ADA2, CBS, CCM2, COL3A1, COL4A1, COL4A2, CST3, ENG, EPHB4, GDF2, GLA, GUCY1A1, HTRA1, KRIT1, NOTCH3, PDCD10, RASA1, RNF213, SLC2A10, SMAD2, SMAD3, SMAD4, TEK, TGFB2, TGFB3, TGFBR1, TGFBR2, and TREX1. See Targeted Genes and Methodology Details for Comprehensive Cerebrovascular Gene Panel and Method Description for additional details.
Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for monogenic conditions in which there is an increased risk for a cerebrovascular accident (stroke).
Prior Authorization is available for this assay.
Method Name
Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing
Reporting Name
Cerebrovascular Gene PanelSpecimen Type
VariesSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Clinical Information
There are many known monogenic conditions that increase an individual's risk for cerebrovascular accident or stroke. Most of these conditions are characterized by abnormal vascular development, abnormal intracranial blood flow, and weakening of the cerebral vessels. Depending on the pathophysiology of the associated condition, risk may be increased for ischemic stroke, hemorrhagic stroke, or both.(1)
Several vascular malformation syndromes are associated with an increased risk for stroke due to abnormalities in vascular development throughout the body.(1) Pulmonary arteriovenous malformations (AVM) are common features of autosomal dominant hereditary hemorrhagic telangiectasia and autosomal dominant capillary malformation-AVM. Pulmonary AVM increase the risk for ischemic stroke by allowing emboli to bypass the lungs and enter the cerebral vasculature.(1) Autosomal dominant familial cerebral cavernous malformation causes abnormal development of capillary channels within the brain and is associated with an increased risk for hemorrhagic stroke.(1,2)
Several monogenic connective tissue conditions leading to vascular fragility are associated with an increased risk for arterial dissection and ischemic stroke.(1) These conditions lead to defects impacting the structural integrity of blood vessels throughout the body resulting in a high risk for vessel rupture. This panel assesses several vascular fragility syndromes, including autosomal dominant vascular Ehlers-Danlos syndrome, autosomal dominant Loeys-Dietz syndrome, autosomal dominant familial aortic aneurysm and dissection, and autosomal recessive arterial tortuosity syndrome.(3-6)
Hereditary cerebral small vessel disease (SVD) is a group of conditions generally characterized by lacunar infarcts and white matter hyperintensities on magnetic resonance imaging and an increased risk for ischemic and/or hemorrhagic stroke.(1,7) The monogenic SVDs assessed on this panel include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), autosomal dominant retinal vasculopathy with leukodystrophy, autosomal dominant COL4A1-associated SVD, and autosomal dominant COL4A2-associated SVD.(1, 7)
Moyamoya disease, a condition characterized by progressive narrowing of the blood vessels and an increased risk for ischemic stroke, can be inherited in an autosomal dominant manner. However, in most individuals, the genetic etiology (if any) remains unknown.(1,8)
Other conditions associated with increased risk for ischemic and hemorrhagic stroke assessed on this panel include X-linked Fabry disease, autosomal recessive homocystinuria due to variants in the CBS gene, and autosomal recessive adenosine deaminase 2 deficiency.(1,9)
Reference Values
An interpretive report will be provided.
Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(10) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Clinical Reference
1. Tan RY, Markus HS. Monogenic causes of stroke: now and the future. J Neurol. 2015;262(12):2601-2616. doi:10.1007/s00415-015-7794-4
2. Zafar A, Quadri SA, Farooqui M, et al. Familial cerebral cavernous malformations. Stroke. 2019;50(5):1294-1301. doi:10.1161/STROKEAHA.118.022314
3. Byers PH. Vascular Ehlers-Danlos syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 1999. Updated February 21, 2019. Accessed September 6, 2024. Available at www.ncbi.nlm.nih.gov/books/NBK1494/
4. Loeys BL, Dietz HC. Loeys-Dietz syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2008. Updated March 1, 2018. Accessed September 6, 2024. Available at www.ncbi.nlm.nih.gov/books/NBK1133/
5. Milewicz DM, Regalado E: Heritable thoracic aortic disease overview. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2003. Updated May 4, 2023. Accessed September 6, 2024. Available at www.ncbi.nlm.nih.gov/books/NBK1120/
6. Callewaert B, De Paepe A, Coucke P: Arterial Tortuosity Syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2014. Updated February 23, 2023. Accessed September 6, 2024. Available at www.ncbi.nlm.nih.gov/books/NBK253404/
7. Litak J, Mazurek M, Kulesza B, et al. Cerebral small vessel disease. Int J Mol Sci. 2020;21(24):9729. doi:10.3390/ijms21249729
8. Shang S, Zhou D, Ya J, et al. Progress in moyamoya disease. Neurosurg Rev. 2020;43(2):371-382. doi:10.1007/s10143-018-0994-5
9. Aksentijevich I, Sampaio Moura N, Barron K. Adenosine deaminase 2 deficiency. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2019. Accessed September 6, 2024. Available at www.ncbi.nlm.nih.gov/books/NBK544951
10. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424
Day(s) Performed
Varies
Report Available
28 to 42 daysTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81405 x5
81406 x3
81408
81479
81479 (if appropriate for government payers)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
CVHBG | Cerebrovascular Gene Panel | 55232-3 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
617226 | Test Description | 62364-5 |
617227 | Specimen | 31208-2 |
617228 | Source | 31208-2 |
617229 | Result Summary | 50397-9 |
617230 | Result | 82939-0 |
617231 | Interpretation | 69047-9 |
617232 | Additional Results | 82939-0 |
617233 | Resources | 99622-3 |
617234 | Additional Information | 48767-8 |
617235 | Method | 85069-3 |
617236 | Genes Analyzed | 48018-6 |
617237 | Disclaimer | 62364-5 |
617238 | Released By | 18771-6 |
mcl-moltechtestmenu; mcl-cardiology